Տարեվերջյան ամփոփիչ աշխատանք
1. Բաղդատել թվերը, եթե
ա) f(x) = x8
⤳ f(3) և f(5)
f(3) = 38 f(5) = 58 f(3) < f(5)
⤳ f(-11) և f(12)
f(-11) = -118 f(12) = 128 f(-11) < f(12)
բ) f(x) = x3
⤳ f(-2) և f(-7)
f(-2) = -23 f(-7) = -73 f(-2) > f(-7)
⤳ f(10) և f(12)
f(10) = 103 f(12) = 123 f(10) < f(12)
2.Լուծել հավասարումը
ա )x4=74
x = 7
3. Բաղդատել թվերը f(x) = x1/3
f(15) և f(14)
f(15) = 151/3 f(14) = 141/3 f(15) > f(14)
4. Լուծել հավասարումը
ա) 2x = 0,5
2x = ½ 2x = 2-1 x = -1
բ) ( 1/3)x = ∛3
1/3 = 3-1 3-x = 31/3 -x = 1/3 x = -1/3
գ) 4x-1 = 2×8x-2
4 = 22 8 = 23 22x-2 = 2×23x-6
2x-2 = 1+3x-6 2x-3x = -6+2+1 -x = -3
x = 3
դ) 54x = (0,2)x-6
0.2 = 5-1 54x = 5-x+6 4x = -x+6 5x = 6 x = 1.2
ե) (0,125)3-x = 2 √2
0.125 = 2-3 2-9+3x = 20.5 -9+3x = 0.5 3x = 9.5 x = 9.5/3
զ) (√0,5)2-x = 32
(√0,5)2-x = (0.50.5)2-x = (2-1)1-0.5x = 20.5x-1 0.5x-1 = 5 0.5x = 6 x =12
5. Լուծել անհավասարումը
ա) (1/4)x ≤ 64
1/4 = 0.25 64 = 0.25-3 x ≤ -3
բ) 3x+1 × 5x-2 < 27
3x × 3 × 5x × 1/25 < 27 15x × 3/25 < 27 15x < 225 15x < 152 x < 2<2 o:p="">2>
6. Հաշվել.
ա) ⤳ log381
3x = 81 x = 4
⤳ lg0,001
10x = 0.001 x = -3
⤳ log1/749√7
(1/7)x = 49√7 x = -2.5
⤳ 52log512
(52log512)2 = 122 = 144
⤳ log251/125
25x = 1/125 x = -1.5
բ) ⤳ 2log26 -log29 = log236 – log29 = log24 2x = 4 x = 2
⤳ 2log1/56 - 1/2log1/5400 - 4log1/5∜45 =
= log1/536 – log1/520 – log1/545 = log1/50.04 1/5x = 0.04 x = 2
⤳ (log536 – log512) ÷ log59 = log53 ÷ log59 = log93 9x = 3 x = 0.5
⤳ 36log65 + 101-lg2 - 3log936 =
⤳ (25log0,26+4log0,56)1/lg18 =
7.
Լուծել հավասարումը
⤳ log0,9(6x-23)
= 0
6x – 23 = 0.90 6x – 23 = 1 6x = 24
x = 4
⤳
2log2(x-5)
+ log √2(x+2) = 6
2log2(x-5) + 2log2(x+2)
= 6 2log2(x2-3x-10)
= 6
log2(x2-3x-10) = 3 x2-3x-10 = 8 x2-3x-18 = 0 D = 9+72 = 81
x1 = (3+9)/2 = 6 x2 = (3-9)/2 = -3
⤳
1/
lg10x +6/ lgx+5 = 1
lg10x = lg10+lgx = 1+lgx (lgx+5+6(lgx+1))/((lgx+1)(lgx+5)) = 1
(7lgx+11)/((lgx+1)(lgx+5)) = 1 7lgx+11 = lg2x+5lgx+lgx+5
lg2x-lgx-6 = 0 նշ․ lgx = t t2+t+6 = 0 D = 1+24 = 25
x1 = (1+5)/2 = 3 x2 = (1-5)/2 = -2
8. Լուծել անհավասարումը
⤳ log2(x-5) ≥ 3
x-5 ≥ 23 x-5 ≥ 8 x ≥ 13
⤳ log3(x2+7x-5) < 1<1 o:p="">1>
x2+7x-5 < 3 x2+7x-8 < 3 D = 49+32 = 81 x1 = 2 x2 = -8
⤳ lg(7x+5) < 1+ lg3
lg(7x-5) – lg3 < 1 (7x+5)/3 < 10 7x+5 < 30 7x < 25 x < 25/7
No comments:
Post a Comment